首页 > 设备知识 > 经验 > 装载机铲斗的工况有哪些,装载机工作装置组成及铲斗的作用

装载机铲斗的工况有哪些,装载机工作装置组成及铲斗的作用

来源:整理 时间:2023-05-23 13:05:54 编辑:设备回收 手机版

本文目录一览

1,装载机工作装置组成及铲斗的作用

工作装置主要由铲斗和动臂组成,装载机如果没有铲斗就好象人没有手一样,你无法工作啊。车上一切的系统最终要依靠铲斗工作才可以有价值。
请问美标不锈钢630始锻温度与终锻温度是多少?为什么上钢五厂的630不锈钢锻打出现裂纹?

装载机工作装置组成及铲斗的作用

2,关于ZL40装载机的铲斗的参数计算

轮式装载机工作装置设计中,要对其各个部件的强度进行计算,方法很多,算出的结果也很精确,但如果外载荷选择不当,计算将是没有用的。本文对轮式装载机工作装置计算工况,计算载荷进行讨论,提出外载荷的求解方法。1 计算位置和计算工况的确定 装载机工作装置强度计算中,应选择工作装置受力最大的位置为计算位置。分析装载机铲掘、运输,提升及卸载等作业过程,以装载机在水平面上铲掘物料时,工作装置受力最大。因此对工作装置强度计算应取装载机在水平面上作业,铲斗斗底与地面水平时为计算位置。 装载机工作装置计算工况,文献〔1〕、〔2〕中介绍了六种工况:①对称水平受力工况;②对称垂直受力后轮离地工况;③对称水平与垂直同时作用后轮离地工况;④水平受力偏载工况;⑤垂直受力偏载后轮离地工况;⑥水平偏载与垂直偏载后轮离地工况。对于④、⑤、⑥三种工况,由于偏载程度至今尚未研究清楚,若取极限位置进行强度计算,动臂板高应力区都达到了材料的屈服极限,这与实际测量数据出入较大,看来极限偏载工况的假设不尽合理,我们只讨论①、②、③种工况。根据对ZL30装载机工作装置进行强度分析,①、②种工况的应力大大小于第③种工况的应力,所以我们选工况③为计算工况。工况③是受垂直载荷和水平载荷作用后轮离地工况,由于目前载机设计中,转斗掘起力远远大于动臂掘起力,我们认为第③种工况是转斗缸掘起使后轮离地,当装载机继续铲装时,铲斗与动臂下铰点没有着地,动臂是个悬梁。我们取此工况为工作装置中动臂的计算工况,并把此工况作为工况A。另一种铲掘工况是铲斗与动臂的下铰点离地高度很小,在转斗作业时有可能接地成为一个支点,致使装载机的纵向稳定性增加,这种情况转斗缸力达到最大值,铲斗、拉杆、摇臂受力最大,我们把此工况作为B工况,为铲斗、拉杆、摇臂、销轴的计算工况。2 外载荷的确定 外载荷的确定在强度计算中是非常重要的。对于工况A中垂直载荷的计算方法,我们的观点与文献〔1〕、〔2〕、〔3〕一致,即按静态倾翻载荷确定垂直力。对水平力计算,文献〔1〕、〔2〕没有给出具体计算方法,文献〔3〕中没有考虑系统油压的影响。目前有两种方法,一是不考虑系统压力对水平力的影响,取装载机最大插入力,此时力偏大;一是扣除系统最高压力时,发动机传到驱动轮上牵引力,此时力偏小。我认为水平力的计算,应扣除在这种工况下实际工作压力时发动机传到驱动轮上的牵引力。对于工况B中的载荷计算方法目前还没有资料报道。2.1 载荷作用点的确定 铲斗承受的水平载荷Rx水平作用在斗刃的中间。根据GB10400-89掘起力定义,垂直载荷Rz作用在距斗刃100mm的中间,见图1。图1 外载荷作用点2.2 工况A载荷的确定2.2.1 垂直载荷Rz的计算由图1知式中:Gs——装载机整机重量;LA——装载机重心到前轮中心距离;LB——R2作用点到前轮中心距离。2.2.2 水平载荷Rx的计算2.2.2.1 连杆机构的几何关系 (1)斗四杆机构见图2,经过推导有以下关系式图2 斗四杆机构 (1) (2) (3)α4=α2-α3 (4)α5=180°-α1-α2 (5) (6)α7=α6-α5 (7)L4=R0.sinα4 (8)L5=LO1.sinα3 (9) (2)斗油缸四杆机构见图3,经推导有以下关系式图3 斗油缸四杆机构 (10) (11) (12) α12=α10-α11 (13) L6=R5.sinα12 (14)2.2.2.2 水平载荷Rx的计算见图4图4 工作装置机构简图 (15)式中:PT——转斗缸推力;L1,L2,L3——结构参数;L4,L5,L6——通过(1)~(4)式求得。 (工作装置是单转斗缸) (16) (工作装置是双转斗缸) (17)式中:p——工作压力;D——转斗缸直径。 式(15)中有两个未知数PT,RX,但我们可以通过总体计算,导出RX和工作压力的关系式: MB=F1(p) (18) RX=F2(MB) (19)即 RX=F(p) (20)式中:MB——工作泵消耗的扭矩(图5)。图5 工作泵消耗扭矩 可以通过逐次求出RX的精确值。首先将RX=0代入(15)式求出PT,通过(16),(17)式求出p,再由(20)式求出RX。然后再把RX值代入(15)式重复上述计算,这样经过多次计算,当两次RX值接近时,认为此时RX值为精确值,我们用此法对ZL30装载机工作装置外载荷进行计算,RX=65559N,而不考虑油压时RX=92567N,按系统最大压力时RX=48211N,显然这几种计算方法相差较大,最大与最小的值相差一倍多,所以我们认为按我们以上介绍的方法计算是确切的。2.3 工况B载荷的确定见图6图6 垂直载荷计算简图 工况B载荷RZ的确定,应按以动臂下铰点处为支承点,后轮离地时计算得出的RZ和按转斗缸最大工作压力时计算得到的RZ中取其中较小值。 由稳定性确定的载荷RZ: (21) 由转斗缸最大工作压力确定的载荷RZ: (22)式中:D——转斗缸直径(如是双缸再乘以2);p——转斗缸最大工作压力。3 结论 (1)装载机工作装置静强度计算的载荷工况:对于动臂取水平载荷和垂直载荷同时作用后轮离地工况,铲斗、摇臂、拉杆、销轴取以动臂前端为支承点掘起工况。 (2)动臂计算工况中,水平力RX的计算应考虑在此工况下工作压力对水平力的影响。 (3)提出的水平力RX的计算方法,通过对ZL30,ZL40装载机工作装置设计中的强度计算实际应用,认为是可行

关于ZL40装载机的铲斗的参数计算

3,装载机铲斗左右摆是什么原因造成的

主要是那些关节销和套磨损,没有其他原因,铲车配件那里有卖
应该是你的转向油缸的销套磨了。更换试试。这些东西都有间隙的。
两大臂 铲斗都没有变型的话你检查一下轮胎是否两轮胎高低平衡和气压是否正常

装载机铲斗左右摆是什么原因造成的

4,装载机铲斗提升和翻转无力有什么原因

装载机工作无2113力的故障原因:故障通常表现为:5261动臂4102举升与铲斗翻转无力。故障的主1653要原因有四个方面。装载机驾驶员招聘求职,上【专猎驾驶员】市场1、系统压力低:在分配阀测压点处接量程为25mpa的压力表,使发动机和液压油在正常工作温度、发动机转速在1800r/min左右时,操纵分配阀转斗滑阀,使铲斗后倾到底,压力表显示的压力应为17mpa。如果低于此数值,应拆检安全阀,检查先导阀弹簧是否断裂、密封是否良好、主阀芯是否卡死及阻尼孔是否堵塞等。以上均无问题时,调整调压螺钉,使系统压力达到正常值。2、动臂缸或转斗缸内漏:分别将动臂缸或转斗缸的活塞收到底,拆下无杆腔油管,使动臂缸或转斗缸的有杆腔继续充油。若无杆腔油口有较多油液泄出(正常泄漏量应≤30ml/min),则说明活塞密封环已损坏,应更换;也可以使铲斗装满载荷,举升到极限位置,动臂操纵杆置于中位,并使发动机熄火,观察动臂的下沉速度(正常时应<40mm/h);然后,将动臂操纵杆置于上升位置,如果这时动臂下沉速度明显加快,说明内漏发生在液压缸;如果下沉速度变化不明显,则内漏原因出在分配阀。3、分配阀内漏:分配阀内漏的主要原因有:总安全阀的主阀芯被卡死;阀杆与阀体的配合间隙太大(正常配合间隙为0.025~0.040mm);阀杆或阀体拉伤;密封件损坏等。4、工作齿轮泵内漏:齿轮泵内漏表现为:工作时噪声大、发动机转速越高,则噪声越大;在滤油器中可见到大量铜屑。应拆检齿轮泵,检测齿轮的端面间隙(正常值为0.100-0.140mm)齿轮的啮合间隙(正常值为0.005~0.015mm)、齿轮的径向间隙(正常值为0.100~0.200mm),以及检查密封件是否良好的等。如有超差或损坏,应修复或更换。
压力不够 1.升高主安全阀压力(清洗安全阀) 2.排除安全阀的问题,则是工作泵的压力不够(更换工作泵) 就只有这两个原因

5,关于ZL40装载机的铲斗的参数计算

轮式装载机工作装置设计中,要对其各个部件的强度进行计算,方法很多,算出的结果也很精确,但如果外载荷选择不当,计算将是没有用的。本文对轮式装载机工作装置计算工况,计算载荷进行讨论,提出外载荷的求解方法。1 计算位置和计算工况的确定 装载机工作装置强度计算中,应选择工作装置受力最大的位置为计算位置。分析装载机铲掘、运输,提升及卸载等作业过程,以装载机在水平面上铲掘物料时,工作装置受力最大。因此对工作装置强度计算应取装载机在水平面上作业,铲斗斗底与地面水平时为计算位置。 装载机工作装置计算工况,文献〔1〕、〔2〕中介绍了六种工况:①对称水平受力工况;②对称垂直受力后轮离地工况;③对称水平与垂直同时作用后轮离地工况;④水平受力偏载工况;⑤垂直受力偏载后轮离地工况;⑥水平偏载与垂直偏载后轮离地工况。对于④、⑤、⑥三种工况,由于偏载程度至今尚未研究清楚,若取极限位置进行强度计算,动臂板高应力区都达到了材料的屈服极限,这与实际测量数据出入较大,看来极限偏载工况的假设不尽合理,我们只讨论①、②、③种工况。根据对ZL30装载机工作装置进行强度分析,①、②种工况的应力大大小于第③种工况的应力,所以我们选工况③为计算工况。工况③是受垂直载荷和水平载荷作用后轮离地工况,由于目前载机设计中,转斗掘起力远远大于动臂掘起力,我们认为第③种工况是转斗缸掘起使后轮离地,当装载机继续铲装时,铲斗与动臂下铰点没有着地,动臂是个悬梁。我们取此工况为工作装置中动臂的计算工况,并把此工况作为工况A。另一种铲掘工况是铲斗与动臂的下铰点离地高度很小,在转斗作业时有可能接地成为一个支点,致使装载机的纵向稳定性增加,这种情况转斗缸力达到最大值,铲斗、拉杆、摇臂受力最大,我们把此工况作为B工况,为铲斗、拉杆、摇臂、销轴的计算工况。2 外载荷的确定 外载荷的确定在强度计算中是非常重要的。对于工况A中垂直载荷的计算方法,我们的观点与文献〔1〕、〔2〕、〔3〕一致,即按静态倾翻载荷确定垂直力。对水平力计算,文献〔1〕、〔2〕没有给出具体计算方法,文献〔3〕中没有考虑系统油压的影响。目前有两种方法,一是不考虑系统压力对水平力的影响,取装载机最大插入力,此时力偏大;一是扣除系统最高压力时,发动机传到驱动轮上牵引力,此时力偏小。我认为水平力的计算,应扣除在这种工况下实际工作压力时发动机传到驱动轮上的牵引力。对于工况B中的载荷计算方法目前还没有资料报道。2.1 载荷作用点的确定 铲斗承受的水平载荷Rx水平作用在斗刃的中间。根据GB10400-89掘起力定义,垂直载荷Rz作用在距斗刃100mm的中间,见图1。图1 外载荷作用点2.2 工况A载荷的确定2.2.1 垂直载荷Rz的计算由图1知式中:Gs——装载机整机重量;LA——装载机重心到前轮中心距离;LB——R2作用点到前轮中心距离。2.2.2 水平载荷Rx的计算2.2.2.1 连杆机构的几何关系 (1)斗四杆机构见图2,经过推导有以下关系式图2 斗四杆机构 (1) (2) (3)α4=α2-α3 (4)α5=180°-α1-α2 (5) (6)α7=α6-α5 (7)L4=R0.sinα4 (8)L5=LO1.sinα3 (9) (2)斗油缸四杆机构见图3,经推导有以下关系式图3 斗油缸四杆机构 (10) (11) (12) α12=α10-α11 (13) L6=R5.sinα12 (14)2.2.2.2 水平载荷Rx的计算见图4图4 工作装置机构简图 (15)式中:PT——转斗缸推力;L1,L2,L3——结构参数;L4,L5,L6——通过(1)~(4)式求得。 (工作装置是单转斗缸) (16) (工作装置是双转斗缸) (17)式中:p——工作压力;D——转斗缸直径。 式(15)中有两个未知数PT,RX,但我们可以通过总体计算,导出RX和工作压力的关系式: MB=F1(p) (18) RX=F2(MB) (19)即 RX=F(p) (20)式中:MB——工作泵消耗的扭矩(图5)。图5 工作泵消耗扭矩 可以通过逐次求出RX的精确值。首先将RX=0代入(15)式求出PT,通过(16),(17)式求出p,再由(20)式求出RX。然后再把RX值代入(15)式重复上述计算,这样经过多次计算,当两次RX值接近时,认为此时RX值为精确值,我们用此法对ZL30装载机工作装置外载荷进行计算,RX=65559N,而不考虑油压时RX=92567N,按系统最大压力时RX=48211N,显然这几种计算方法相差较大,最大与最小的值相差一倍多,所以我们认为按我们以上介绍的方法计算是确切的。2.3 工况B载荷的确定见图6图6 垂直载荷计算简图 工况B载荷RZ的确定,应按以动臂下铰点处为支承点,后轮离地时计算得出的RZ和按转斗缸最大工作压力时计算得到的RZ中取其中较小值。 由稳定性确定的载荷RZ: (21) 由转斗缸最大工作压力确定的载荷RZ: (22)式中:D——转斗缸直径(如是双缸再乘以2);p——转斗缸最大工作压力。3 结论 (1)装载机工作装置静强度计算的载荷工况:对于动臂取水平载荷和垂直载荷同时作用后轮离地工况,铲斗、摇臂、拉杆、销轴取以动臂前端为支承点掘起工况。 (2)动臂计算工况中,水平力RX的计算应考虑在此工况下工作压力对水平力的影响。 (3)提出的水平力RX的计算方法,通过对ZL30,ZL40装载机工作装置设计中的强度计算实际应用,认为是可行
zl40装载机自重应该是在12.5吨左右,现在40机市面上很少,只有少部分特殊工况才能用得到。
文章TAG:装载机装载机铲斗载机铲斗装载机铲斗的工况有哪些

最近更新

相关文章

设备知识排行榜推荐